High Perceptual Quality Image Denoising via Neural Compression

Nam Nguyen
Oregon State University, Oregon, United States

{nguynam4}@oregonstate.edu

Abstract

Image denoising aims to recover a clean image from a
single noisy observation, yet modern deep denoisers typi-
cally rely on paired clean-noisy supervision that is often
unavailable in practical imaging pipelines. Motivated by the
information-theoretic connection between lossy compression
and denoising, we revisit compression-based denoising us-
ing learned neural codecs trained directly on noisy inputs,
where the rate bottleneck implicitly regularizes the recon-
struction. However, optimizing only rate-distortion com-
monly yields perceptually over-smoothed outputs, especially
at low bitrates. To address this, we propose a perception-
enhanced neural compression denoiser that augments the
rate-distortion objective with an adversarial distribution-
matching term implemented via a Wasserstein GAN (WGAN).
Using an unpaired clean-image dataset, the discriminator
encourages reconstructions to lie on the clean-image man-
ifold while preserving the compression-induced denoising
effect. Experiments on natural images (KODAK-24) with
synthetic Gaussian noise demonstrate improved perceptual
quality compared to distortion-driven baselines, and addi-
tional evaluations on fluorescence microscopy (Mouse Nu-
clei) and real smartphone photographs (SIDD) show that
the method generalizes beyond controlled synthetic settings.
Overall, our framework provides a simple and effective way
to obtain perceptually faithful denoising from a single noisy
image without requiring paired supervision.

1. Introduction

Image denoising is a fundamental problem in low-level
vision, aiming to recover a clean image from a single noisy
observation. While classical approaches relied on hand-
crafted priors and sparse signal representations (e.g., filter-
ing, wavelets, and sparse coding) [20-22, 32, 36, 38, 49],
modern deep denoisers learn rich image statistics directly
from data and achieve strong benchmark performance
[28, 30, 54, 56, 58]. However, most state-of-the-art methods
require large-scale paired clean-noisy supervision, which
is often unavailable in practical imaging pipelines such
as microscopy, remote sensing, and astronomical imaging

[7,9,39,51].

To relax the need for paired data, self-supervised denois-
ing methods train using only noisy observations [8, 24, 26,

, 41]. While these approaches broaden applicability, they
can underperform fully supervised denoisers and may re-
quire stronger assumptions (e.g., multiple noisy captures
or noise independence) and more delicate training strate-
gies [8, 24, 26, 29]. These limitations motivate alternative
paradigms that can denoise from a single noisy image with-
out paired supervision.

A promising and principled direction stems from lossy
compression. When compressing a noisy signal at an appro-
priate operating point, the rate bottleneck can suppress noise
while preserving the underlying structure, effectively acting
as an implicit prior. This connection between compression
and denoising has been studied in information theory and
universal denoising, where rate constraints and description-
length principles yield denoising behavior under broad condi-
tions [ 19, 48]. Historically, however, practical compression-
based denoising has been most effective for simplified source
models, limiting its impact on high-dimensional natural im-
ages.

Recent advances in neural image compression make this
connection practically actionable. Learned codecs optimize
nonlinear analysis/synthesis transforms under explicit rate
constraints and have substantially improved rate-distortion
performance over traditional hand-engineered designs [4—

, 33, 52]. When trained directly on noisy inputs, the com-
pression bottleneck prevents trivial identity mappings and
can induce denoising even without clean supervision, en-
abling denoising from a single noisy observation as demon-
strated by recent compression-based denoisers [53].

However, distortion-driven compression objectives alone
are often insufficient for perceptually satisfying denoising.
Pixel-wise criteria such as MSE can yield over-smoothed
reconstructions, especially at low bitrates where aggressive
bottlenecking removes fine details. To address this, we pro-
pose a perception-enhanced neural compression denoiser
that augments the standard rate-distortion objective with an
adversarial distribution-matching term implemented via a
Wasserstein GAN (WGAN) [3]. Using an unpaired clean-



image dataset, the discriminator encourages reconstructions
to align with the clean-image manifold, with the Lipschitz
constraint enforced through a gradient penalty [23]. This
formulation preserves the compression-induced denoising
effect while improving perceptual realism.

We validate the proposed framework on both synthetic
and real-world denoising benchmarks. Experiments on
KODAK-24 with additive Gaussian noise show improved
perceptual quality over distortion-only compression base-
lines and competitive performance among unsupervised
methods [16, 46, 53]. Additional evaluations on fluores-
cence microscopy (Mouse Nuclei) and real smartphone pho-
tographs (SIDD) demonstrate robustness beyond controlled
synthetic settings [, 13].

2. Related Work

Classical and Learning-Based Image Denoising. Early
image denoising methods relied on handcrafted priors and
signal representations, including linear filtering, wavelet
thresholding, sparse coding, and Markov random field mod-
els [20, 21, 32, 36, 38, 49]. These approaches established
fundamental principles for noise suppression but struggled to
generalize across diverse image statistics. Deep learning has
since revolutionized denoising by learning rich image priors
from data, with CNN- and transformer-based models achiev-
ing state-of-the-art distortion performance under supervised
training [28, 30, 54, 56, 58]. Despite their effectiveness, such
methods typically require large paired clean-noisy datasets,
limiting their applicability in many real-world imaging sce-
narios.

Self-Supervised and Unsupervised Denoising. To reduce
reliance on paired supervision, self-supervised denoising
methods train using only noisy observations. Noise2Noise
[29] exploits multiple independent noisy realizations, while
Noise2Void [26] and Noise2Self [8] leverage blind-spot ar-
chitectures to avoid learning the identity mapping. More
recently, score-based approaches such as Noise2Score [24]
estimate the score of the noisy data distribution for denoising.
Although these methods broaden applicability, they often
underperform supervised counterparts and may require re-
strictive assumptions or careful architectural design. In con-
trast, our approach denoises from a single noisy observation
without blind-spot constraints or repeated measurements.

Compression-Based Denoising and Information-
Theoretic Foundations. The relationship between
compression and denoising has deep roots in information
theory. Early work showed that description-length and rate
constraints can induce denoising behavior, particularly for
finite-alphabet and stationary sources [19, 48]. Practical
compression-based denoising methods include MDL-based
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Figure 1. Neural compression architecture used for denoising.

wavelet selection [40], the Occam filter [34], and adaptive
wavelet thresholding schemes [14, ].  While these
methods are theoretically grounded, their effectiveness on
high-dimensional natural images is limited.

Recent work revisits compression-based denoising using
learned neural codecs. Zafari et al. [53] demonstrate that
neural image compression models trained on noisy inputs
can act as effective denoisers when the rate-distortion trade-
off is properly tuned. Unlike traditional self-supervised meth-
ods, this approach requires only a single noisy observation
and no clean supervision. Our work builds on this paradigm
by addressing a key limitation: distortion-only optimization
leads to perceptually over-smoothed reconstructions.

Neural Image Compression. Neural image compression
has emerged as a powerful alternative to traditional codecs,
achieving superior rate-distortion performance through end-
to-end learning [5, 6, 33]. Subsequent work introduced more
expressive entropy models [4], attention and transformer-
based architectures [3 1, 59], and theoretical analyses of neu-
ral codecs [10, 35, 45]. While most compression methods fo-
cus on efficient representation of clean images, several works
jointly address compression and denoising [12, 37, 43, 50].
In contrast, we leverage compression as an implicit regu-
larizer for denoising rather than explicitly optimizing for
compression of noisy content.

Perceptual Restoration and Adversarial Learning. Op-
timizing pixel-wise distortion metrics alone often yields re-
constructions that are perceptually suboptimal. Prior work
in image restoration has incorporated perceptual losses and
adversarial learning to improve visual fidelity, including
GAN-based super-resolution and denoising [1 1,27, 47]. The
Wasserstein GAN framework provides a principled means of
distribution matching with improved training stability [3, 23].
Our approach integrates adversarial distribution matching
into a neural compression framework, enabling perception-
aware denoising from unpaired clean images while preserv-
ing the compression-induced denoising effect.

3. Perceptual Image Denoising via Neural Com-
pression
3.1. Neural Compression as a Denoising Mechanism

Despite strong information-theoretic motivation,
compression-based denoising has historically seen limited
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Figure 2. Proposed framework combining a neural compression autoencoder with a WGAN-based discriminator.

success on high-dimensional signals such as natural images,
largely due to the restricted expressiveness of classical
compression models. Recent advances in neural lossy
compression provide a powerful data-driven alternative,
enabling highly nonlinear representations that adapt to
complex image statistics. Building on this insight, Zafari et
al. [53] demonstrate that neural compression networks can
be repurposed as effective denoisers when trained directly
on noisy observations.

As illustrated in Figure 1, a neural compression model
maps a noisy input image Y™ to a reconstruction y" through
learned analysis and synthesis transforms f and g. Impor-
tantly, training requires access only to noisy images: the
reconstruction loss is computed between the input and its
compressed reconstruction. In contrast to conventional de-
noising networks such as DnCNN [54], the objective is not to
explicitly estimate the clean image. Instead, the compression
bottleneck implicitly regularizes the mapping, preventing
the network from learning a trivial identity function despite
the absence of clean supervision.

Following standard neural compression frameworks [6],
an entropy model is learned to approximate the distribution
of the latent representation. Let C™ = f(Y™) denote the
latent code and |C"™] its quantized version. The expected
rate is defined as

R =E[-log, P([C™])],

and the reconstructed output is given by Y = g(|C™]).
Training minimizes the standard rate-distortion objective

1 -
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where A, controls the rate-distortion trade-off. When .. is
appropriately matched to the noise level, the compression
bottleneck suppresses noise while preserving salient image
structure, yielding effective denoising from a single noisy
observation.

4. Perception-Enhanced Neural Compression
Denoiser

While neural compression provides a principled and un-
supervised mechanism for denoising, objectives based solely
on distortion metrics often yield perceptually suboptimal re-
constructions. In particular, pixel-wise losses such as mean
squared error favor overly smooth outputs, especially in low-
bitrate regimes where aggressive bottlenecking removes fine
details and textures.

To address this limitation, we introduce a perception-
enhanced neural compression framework that augments the
rate-distortion objective with a perceptual regularization
term. As shown in Figure 2, we integrate a Wasserstein GAN
(WGAN) discriminator [3] that encourages reconstructed im-
ages to align with the distribution of clean natural images.
Crucially, the discriminator is trained using an unpaired
clean-image dataset, preserving the unsupervised nature of
the denoising task.

The resulting objective is

1 -
B[ LI - V1] + A R0 Waae) @

where the Wasserstein-1 term enforces distributional align-
ment between reconstructed outputs Y and clean images
X. The hyperparameters A, and )\, control the trade-off
between rate efficiency, distortion, and perceptual fidelity.
This formulation preserves the denoising effect induced by
the compression bottleneck while producing reconstructions
that are perceptually sharper and more realistic.

5. Experiments

We evaluate our perception-enhanced neural compression
denoiser using a stochastic autoencoder architecture com-
posed of an encoder f, quantizer @, decoder g, and a WGAN
discriminator d, as illustrated in Figure 2. Reconstruction
distortion is measured using the mean squared error (MSE).
Given a noisy observation Y, the reconstructed output is
defined as Y = g(Q(f(Y))). The discriminator d is trained



28
0.010

N
3

0.008

N)
i

0.006

PSNR (dB)

N
N

0.004

MSE Distortion Loss

0.002 20

0.0 0.5 1.0 15

Rate (bpp)

2.0

25 0.0 0.5

(a) MSE-rate curve.

1.0

Rate (

(b) PSNR-rate curve.
Noisy

0.0 0.5 1.0

Rate (

2.0 25 2.0 25

15 15
bpp) bpp)

(¢) SSIM-rate curve.
R=0.13

(d) Reconstruction and denoising examples.

Figure 3. Denoising results on the KodimO1 image from the KODAK-24 dataset corrupted by Gaussian noise NV'(0, 0%) with o = 25.
Increasing the representation rate leads to improved reconstruction fidelity and reduced residual noise.

to align the distribution of reconstructed outputs py- with that
of clean images p ¢ through a Wasserstein-1 objective, while
the autoencoder and discriminator are optimized alternately
following the standard WGAN training protocol [3].

Loss Function. The model is trained by minimizing a com-
posite objective that jointly balances reconstruction distor-
tion, compression rate, and perceptual fidelity:

L=E[Y = V|| +A 10g QU (Y))+Ap Wi (px, by )

3)
where the first term penalizes reconstruction error, the sec-
ond term promotes compact latent representations by regu-
larizing the compression rate, and the third term enforces
perceptual alignment between reconstructed outputs and
clean images via the Wasserstein-1 distance. Notably, the
clean images X are drawn from an unpaired dataset, en-
abling perception-aware denoising without requiring paired
clean—noisy supervision. The hyperparameters A, and A,
control the trade-off between rate efficiency and perceptual
quality.

5.1. Results
5.1.1 Natural Images with Synthetic Noise

For training, we use the BSDS500 dataset [2], which consists
of 481 x 321 natural images with rich texture and structural
diversity. All methods are evaluated on the KODAK-24
dataset [ 1 6], containing 768 x 512 high-quality color images
that are widely adopted for benchmarking image denoising
and compression performance.

Figure 3 illustrates the rate-distortion behavior of our
method on a representative KODAK image. As the repre-
sentation rate increases, the model progressively suppresses
noise while recovering fine textures and edges, resulting in
smooth yet visually plausible reconstructions. Compared to
low-rate regimes, higher-rate operating points better preserve
structural details while avoiding over-smoothing artifacts,
highlighting the effectiveness of the learned rate-distortion-
perception trade-off.

Table 1 reports quantitative denoising results on KODAK-
24 [16] under additive Gaussian noise with o 25. As



Category ‘ Method

| PSNR (dB)t | SSIMt | PI|

. JPEG-2K [42] 26.4408 0.7357 | 7.4794
Non-learning

BM3D [17] 31.8757 0.8687 | 2.6503

. N2C [55] 32.2114 0.8865 | 2.5446

Supervised

N2N [29] 32,2723 0.8877 | 2.5439

DeCompress [53] 27.8315 0.7519 | 2.7979

Unsupervised | OTDenoising [46] 31.2893 0.8677 | 2.0095

Ours 28.0435 0.8035 | 2.1670

Table 1. Quantitative comparison on the KODAK-24 dataset corrupted by Gaussian noise A (0, 2) with o = 25. Best results are shown in

bold, and second-best results are underlined.

Dataset | PSNRT | SSIMt | LPIPS| | DISTS| | Rate (bpp).
Mouse Nuclei (o = 10) | 33.0337 | 0.8052 | 0.0442 | 0.1400 0.1908
Mouse Nuclei (o = 20) | 30.5880 | 0.8028 | 0.0734 | 0.1675 0.1162
SIDD (real noise) 33.6047 | 0.9038 | 0.3233 | 0.2365 0.2194

Table 2. Real-world denoising results on fluorescence microscopy (Mouse Nuclei) and smartphone images (SIDD). For microscopy,
synthetic Gaussian noise with standard deviation ¢ is added following prior work.

expected, fully supervised methods (N2C and N2N) achieve
the highest distortion-based metrics, benefiting from ac-
cess to paired clean-noisy training data [29, 55]. Classi-
cal non-learning baselines such as JPEG-2000 and BM3D
[17,42] provide strong distortion performance, yet may yield
less visually pleasing reconstructions when evaluated with
perception-oriented criteria.

Among unsupervised approaches, distortion-only
compression-based denoising (DeCompress) [53] exhibits
weaker perceptual scores, highlighting the limitation of
optimizing only the rate-distortion objective. In contrast,
OTDenoising [46] attains the best Perceptual Index (PI)
[11] among unsupervised methods, consistent with its
explicit emphasis on perceptual alignment. Our method
substantially improves PI over DeCompress while retaining
the simplicity of compression-based denoising, achieving
the second-best PI among unsupervised methods. Overall,
these results indicate that incorporating an adversarial
distribution-matching term via WGAN [3, 23] improves
perceptual fidelity without requiring paired supervision.

5.1.2 Fluorescence Microscopy and Real Camera Im-
ages

Beyond standard natural-image benchmarks, we evaluate the
proposed framework on two real-world denoising scenarios
with noise characteristics that deviate from idealized syn-
thetic assumptions: fluorescence microscopy images from
the Mouse Nuclei dataset [13] and real smartphone pho-
tographs from the SIDD dataset [1]. These datasets repre-

sent challenging acquisition conditions with domain-specific
structures and complex noise statistics, particularly in mi-
croscopy and camera ISP pipelines [1, 9].

For fluorescence microscopy, we follow prior work and
corrupt clean Mouse Nuclei images with additive Gaussian
noise N (0, 02) at multiple noise levels [13]. This dataset
exhibits sparse, high-contrast structures and statistics that
differ substantially from natural photographic images [9, 13].
As reported in Table 2, our method achieves consistently
strong denoising performance across noise levels, yielding
high PSNR and SSIM while maintaining low perceptual dis-
tortion as measured by LPIPS and DISTS [18, 57], averaged
over 67 test images.

To further assess robustness under realistic photographic
noise, we evaluate on the SIDD dataset, which contains
signal-dependent noise arising from real camera pipelines
and in-camera processing [ 1]. Despite the absence of explicit
modeling for such noise, our method attains competitive dis-
tortion and perceptual metrics on SIDD, averaged over 10
test images, indicating strong generalization beyond con-
trolled synthetic settings [1].

Overall, these results demonstrate that the proposed
perception-enhanced compression framework extends ef-
fectively to real-world restoration scenarios, including mi-
croscopy imaging and consumer photography, while preserv-
ing a favorable balance between distortion and perceptual
quality [ 1].



(a) Clean image.

(b) Noisy image.

(c¢) Denosing image.

Figure 4. Reconstruction/denoising fluorescence microscopy images.

6. Conclusion

We presented a perception-enhanced neural compression
framework for image denoising from a single noisy observa-
tion. Our approach leverages the compression bottleneck as
an implicit prior for suppressing noise, and further improves
visual realism by integrating a WGAN-based perceptual reg-
ularizer that aligns reconstructed outputs with an unpaired
clean-image distribution. Experiments on KODAK-24 under
synthetic Gaussian noise validate the learned rate-distortion-
perception trade-off, showing that our method achieves com-
petitive restoration quality while substantially improving
perceptual fidelity relative to distortion-only compression
baselines. We further demonstrated robustness on fluores-
cence microscopy (Mouse Nuclei) and real camera noise
(SIDD), indicating that the proposed framework extends
beyond natural-image synthetic settings.
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A. Architecture
A.1. Training Details

We adopt a Wasserstein GAN (WGAN) framework
for distributional alignment, jointly training the encoder
f, decoder g, and discriminator d. By the Kantorovich—
Rubinstein duality [44], the Wasserstein-1 distance is ex-
pressed as

sup  E[d(Y)] - E[d(Y)],
Ivdj<1

where Y = g¢(Q(f(X))). The Lipschitz constraint on
the discriminator is enforced via a gradient penalty fol-
lowing WGAN-GP [23]. Unless otherwise specified, we
use A\, = 0.02, gradient penalty coefficient A\gp = 10,
Ndiscriminator = D discriminator updates per generator update,
and classification weight A\, = 0.01.

Wi(py,py) =

All components are optimized using Adam [25] with
learning rates 5x 1073 for the autoencoder, 10~* for the
entropy bottleneck, and 10~ for the discriminator, and mo-
mentum parameters (531, 82) = (0.5,0.999). We apply gra-
dient clipping with a maximum norm of 2.0, employ mixed-
precision training, and compute the exact bit-per-pixel (bpp)
rate during evaluation.

A.2. Neural Network Architectures

We use the same network architectures across all datasets,
summarized in Table 3. The neural codec consists of an
encoder f composed of three convolutional layers followed
by a learnable entropy bottleneck, and a decoder g with three
deconvolutional layers and GDN activations. The adversarial
branch is implemented as a WGAN-GP discriminator d com-
prising three strided convolutional blocks with LeakyReLLU
activations, followed by global average pooling and a linear
output layer.

Table 3. Network architectures for the autoencoder and discrimina-
tor.

Encoder f

Decoder g

Conv2D, stride 2, GDN
Conv2D, stride 2, GDN
Conv2D, stride 2
Entropy Bottleneck (EB)

Deconv2D, stride 2

Deconv2D, stride 2, GDN
Deconv2D, stride 2, GDN

Discriminator d (WGAN-GP)
Conv2D, stride 2, LeakyReLLU

Conv2D, stride 2, LeakyReLU

Conv2D, stride 2, LeakyReLU

Global Average Pooling




