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Compression-Based Denoising

▶ Signal: x = (x1, . . . , xn)

▶ Observation: y = (y1, . . . , yn)

⇒ Goal: recover x from its noisy observation y

Key idea: Structured signals are more compressible than noisy ones.

▶ Optimal lossy compression ⇒ asymptotically optimal denoising [Weissman et al. 2005].

▶ Neural compression as a denoising mechanism [Zafari et al. 2025].

Limitation: Minimizing distortion only often produces over-smoothed/blurry outputs.

⇒ Our approach: Use a WGAN-based discriminator to guide reconstructions toward the
clean-image manifold.
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Perception-enhanced Neural Compression Denoiser
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Figure: Overview of the architecture. x̄ is drawn from the clean image dataset (unpaired with x).
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Experiment Setup

▶ Loss Function:

L = E[∥Y − Ỹ ∥2]︸ ︷︷ ︸
Distortion loss

+ λr logP(Q(f(Y )))︸ ︷︷ ︸
Compression rate

+ λp W1(pX̄ , pỸ )︸ ︷︷ ︸
Wasserstein loss

▶ Dataset:
▶ Training: BSDS500 dataset (481× 321 natural images, high texture and structure)

[Arbelaez et al. 2011].
▶ Testing: Kodak-24 dataset (768× 512 high-quality color images) [Company 1991].

4



Experiment Setup

▶ Loss Function:

L = E[∥Y − Ỹ ∥2]︸ ︷︷ ︸
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Experiment Results

Category Method PSNR (dB) ↑ SSIM ↑ PI ↓

Non-learning
JPEG-2K [Taubman et al. 2002] 26.4408 0.7357 7.4794

BM3D [Dabov et al. 2007] 31.8757 0.8687 2.6503

Supervised
N2C [Zhang et al. 2017] 32.2114 0.8865 2.5446

N2N [Lehtinen et al. 2018] 32.2723 0.8877 2.5439

Unsupervised

DeCompress [Zafari et al. 2025] 27.8315 0.7519 2.7979

OTDenoising [Wang et al. 2023] 31.2893 0.8677 2.0095

Ours 28.0435 0.8035 2.1670

Table: Comparison of denoising performance on the KODAK dataset corrupted by Gaussian noise
N (0, σ2) with σ = 25. Best values are bold and second-best values are underlined.
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Real-World Denoising: Microscopy & Smartphone

▶ Fluorescence microscopy (Mouse Nuclei) [Buchholz et al. 2020] and real smartphone photos
(SIDD) [Abdelhamed et al. 2018].

▶ Our method achieves good PSNR/SSIM and low perceptual distortion across datasets.

Mouse Nuclei (Gaussian noise)

σ PSNR↑ SSIM↑ LPIPS↓ DISTS↓

10 33.03 0.805 0.044 0.140

20 30.59 0.803 0.073 0.168

SIDD (smartphone noise)

PSNR↑ SSIM↑ LPIPS↓ DISTS↓

33.61 0.904 0.323 0.237
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Experiment Results

Category Method PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓ FID ↓

Non-learning
JPEG-2K 26.4381 0.7479 0.4001 7.4368 109.1468

BM3D 31.8757 0.8687 0.2214 3.8550 68.2196

Supervised

DiffDeComp, ρ = 0 30.1119 0.8475 0.1456 2.8558 50.2368

DiffDeComp, ρ = 0.9 28.0348 0.8086 0.1163 2.4571 24.2271

CGanDeComp 28.8619 0.8106 0.0959 2.5179 21.9491

N2C 32.2117 0.8864 0.1269 2.5578 47.8364

N2N 32.2749 0.8877 0.1263 2.5316 43.7995

Restormer 32.4120 0.8967 0.1032 2.6429 35.8829

Unsupervised

GanDeCompress 27.8523 0.8033 0.1983 2.1615 77.9838

DeCompress 27.8057 0.7518 0.2627 2.7967 83.2373

OTDenoising 30.7174 0.8603 0.1385 2.0005 58.5344

DIP 28.5314 0.7882 0.2112 2.7356 61.9785

DD 26.5443 0.7551 0.4244 3.6312 110.8884

Table: Denoising performance comparison on the KODAK dataset with Gaussian noise N (0, σ2),
σ = 25. Best values are bold, second-best values are underlined.
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Thank you!


