

High Perceptual Quality Image Denoising via Neural Compression

Nam Nguyen

School of Electrical Engineering and Computer Science
Oregon State University

January 26, 2026

Compression-Based Denoising

- ▶ **Signal:** $\mathbf{x} = (x_1, \dots, x_n)$
- ▶ **Observation:** $\mathbf{y} = (y_1, \dots, y_n)$
⇒ **Goal:** *recover \mathbf{x} from its noisy observation \mathbf{y}*

Compression-Based Denoising

- ▶ **Signal:** $\mathbf{x} = (x_1, \dots, x_n)$
- ▶ **Observation:** $\mathbf{y} = (y_1, \dots, y_n)$
⇒ **Goal:** *recover \mathbf{x} from its noisy observation \mathbf{y}*

Key idea: *Structured signals* are more **compressible** than noisy ones.

- ▶ Optimal lossy compression ⇒ *asymptotically optimal denoising* [Weissman et al. 2005].
- ▶ Neural compression as a denoising mechanism [Zafari et al. 2025].

Compression-Based Denoising

- ▶ **Signal:** $\mathbf{x} = (x_1, \dots, x_n)$
- ▶ **Observation:** $\mathbf{y} = (y_1, \dots, y_n)$
⇒ **Goal:** *recover \mathbf{x} from its noisy observation \mathbf{y}*

Key idea: *Structured signals* are more **compressible** than noisy ones.

- ▶ Optimal lossy compression ⇒ *asymptotically optimal denoising* [Weissman et al. 2005].
- ▶ Neural compression as a denoising mechanism [Zafari et al. 2025].

Limitation: Minimizing distortion **only** often produces **over-smoothed/blurry** outputs.

Compression-Based Denoising

- ▶ **Signal:** $\mathbf{x} = (x_1, \dots, x_n)$
- ▶ **Observation:** $\mathbf{y} = (y_1, \dots, y_n)$
⇒ **Goal:** *recover \mathbf{x} from its noisy observation \mathbf{y}*

Key idea: *Structured signals* are more **compressible** than noisy ones.

- ▶ Optimal lossy compression ⇒ *asymptotically optimal denoising* [Weissman et al. 2005].
- ▶ Neural compression as a denoising mechanism [Zafari et al. 2025].

Limitation: Minimizing distortion **only** often produces **over-smoothed/blurry** outputs.

⇒ **Our approach:** Use a **WGAN-based discriminator** to guide reconstructions toward the clean-image manifold.

Perception-enhanced Neural Compression Denoiser

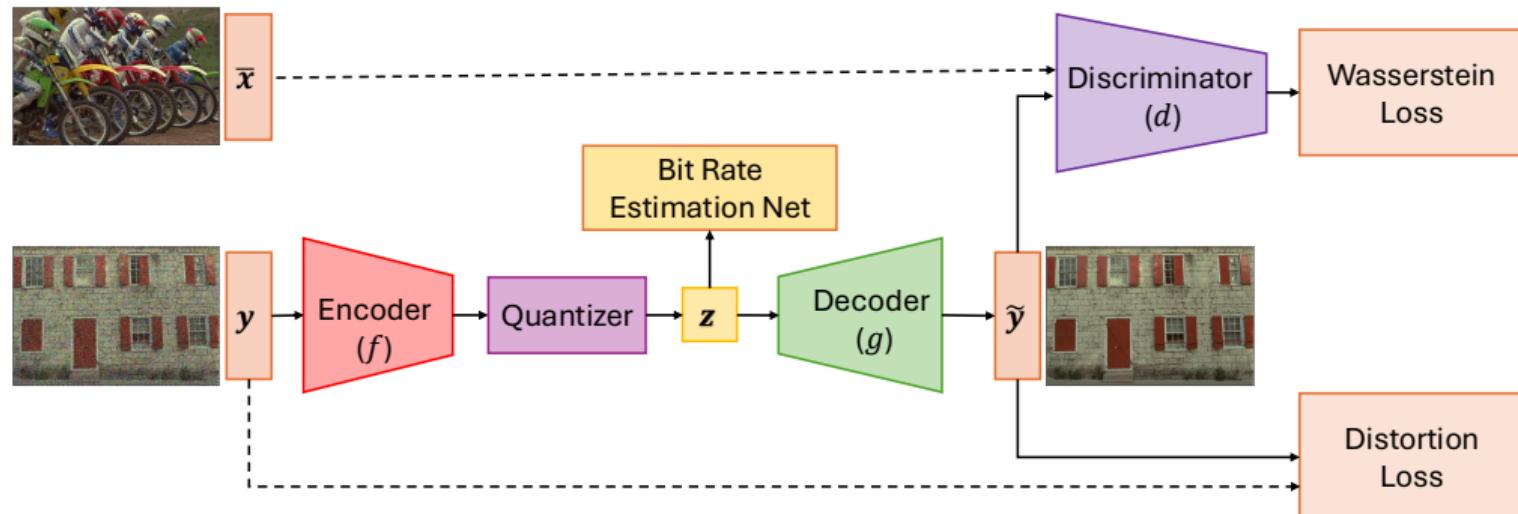


Figure: Overview of the architecture. \bar{x} is drawn from the clean image dataset (unpaired with x).

Experiment Setup

► Loss Function:

$$\mathcal{L} = \underbrace{\mathbb{E}[\|Y - \tilde{Y}\|^2]}_{\text{Distortion loss}} + \lambda_r \underbrace{\log \mathbb{P}(Q(f(Y)))}_{\text{Compression rate}} + \lambda_p \underbrace{W_1(p_{\bar{X}}, p_{\tilde{Y}})}_{\text{Wasserstein loss}}$$

Experiment Setup

► Loss Function:

$$\mathcal{L} = \underbrace{\mathbb{E}[\|Y - \tilde{Y}\|^2]}_{\text{Distortion loss}} + \lambda_r \underbrace{\log \mathbb{P}(Q(f(Y)))}_{\text{Compression rate}} + \lambda_p \underbrace{W_1(p_{\bar{X}}, p_{\tilde{Y}})}_{\text{Wasserstein loss}}$$

► Dataset:

- **Training:** [BSDS500 dataset](#) (481 × 321 natural images, high texture and structure) [\[Arbelaez et al. 2011\]](#).
- **Testing:** [Kodak-24 dataset](#) (768 × 512 high-quality color images) [\[Company 1991\]](#).

Experiment Results

Category	Method	PSNR (dB) \uparrow	SSIM \uparrow	PI \downarrow
Non-learning	JPEG-2K [Taubman et al. 2002]	26.4408	0.7357	7.4794
	BM3D [Dabov et al. 2007]	31.8757	0.8687	2.6503
Supervised	N2C [Zhang et al. 2017]	<u>32.2114</u>	<u>0.8865</u>	2.5446
	N2N [Lehtinen et al. 2018]	32.2723	0.8877	2.5439
Unsupervised	DeCompress [Zafari et al. 2025]	27.8315	0.7519	2.7979
	OTDenoising [Wang et al. 2023]	31.2893	0.8677	2.0095
	Ours	28.0435	0.8035	<u>2.1670</u>

Table: Comparison of denoising performance on the KODAK dataset corrupted by Gaussian noise $\mathcal{N}(0, \sigma^2)$ with $\sigma = 25$. Best values are **bold** and second-best values are underlined.

Real-World Denoising: Microscopy & Smartphone

- ▶ Fluorescence microscopy (Mouse Nuclei) [Buchholz et al. 2020] and real smartphone photos (SIDD) [Abdelhamed et al. 2018].
- ▶ Our method achieves good PSNR/SSIM and low perceptual distortion across datasets.

Mouse Nuclei (Gaussian noise)					SIDD (smartphone noise)			
σ	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow
10	33.03	0.805	0.044	0.140	33.61	0.904	0.323	0.237
20	30.59	0.803	0.073	0.168				

Experiment Results

Category	Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PI \downarrow	FID \downarrow
Non-learning	JPEG-2K	26.4381	0.7479	0.4001	7.4368	109.1468
	BM3D	31.8757	0.8687	0.2214	3.8550	68.2196
Supervised	DiffDeComp , $\rho = 0$	30.1119	0.8475	0.1456	2.8558	50.2368
	DiffDeComp , $\rho = 0.9$	28.0348	0.8086	0.1163	2.4571	<u>24.2271</u>
	CGanDeComp	28.8619	0.8106	0.0959	2.5179	21.9491
	N2C	32.2117	0.8864	0.1269	2.5578	47.8364
	N2N	<u>32.2749</u>	<u>0.8877</u>	0.1263	2.5316	43.7995
	Restormer	32.4120	0.8967	<u>0.1032</u>	2.6429	<u>35.8829</u>
Unsupervised	GanDeCompress	27.8523	0.8033	0.1983	<u>2.1615</u>	77.9838
	DeCompress	27.8057	0.7518	0.2627	2.7967	83.2373
	OTDenoising	30.7174	0.8603	0.1385	2.0005	58.5344
	DIP	28.5314	0.7882	0.2112	2.7356	61.9785
	DD	26.5443	0.7551	0.4244	3.6312	110.8884

Table: Denoising performance comparison on the KODAK dataset with Gaussian noise $\mathcal{N}(0, \sigma^2)$,

Thank you!