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Background: Deep Learning 4+ Lossy Compression

Why deep learning for lossy compression?
» Requires retraining per dataset, but provides major benefits:
» Higher compression efficiency
» Better perceptual quality and realism

» Supports multi-task learning for downstream applications

Figure: Degradation of JPEG. As the rate
decreases, the result is pixelated.



Background: Task-oriented Lossy Compression
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Source and Target labels:
» Source: X ~ px(x).
» Target labels: Sq,---,Sk ~ ps(s1,---,SK), where px g(x,s1,- -, SK).
Lossy Compression: X1, Xo, -+, X, '~ px ().
» Encoder: f: X"+ {1,2,---,2"%} maps the source X" to a message Z.
» Decoder: g:{1,2,---,2"F} s xn reproduces data X" to satisfy task-oriented demands

of downstream applications.



Background: Rate-Distortion-Classification (RDC) Function

The rate-distortion-classification function:
> Distortion between symbols: E[A(X, Xp ¢)] > 0, with equality iff X = X

> Classification constraint [Wang et al. 2024]: the uncertainty of classification variables S

given X N
H(SX) <G, ke [K].

R(D,C) = n;lr;( I(X; X) (1a)
st.  E[A(X,Xpe)] <D, (1b)
H(S|X) < C. (1¢)

where S is a classification variable.




Background: Rate-Distortion-Classification Tradeoff

Cross Entropy Loss

» Tradeoff between distortion and classification with given rate
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(a) The RDC curve on MNIST.
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(b) The RDC curves at multiple rates on MNIST.
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Universal Representations: Motivation
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Motivation for Universal Representations

» R(D,C) corresponds to designing an encoder-decoder pair for each (D, C') tradeoff point
(i-e., variable-encoder variable-decoder)

» Main question: Is jt possible to design/reuse an encoder for multiple tradeoff points?



Universal Representation: Definition

The Universal Rate-Distortion-Classification Function
» Let X ~ px and © be an arbitrary set of (D, C) pairs

> Idea: find a reprentation Z which can be transformed into reconstruction Xp ¢ to
meet constraints (D,C) € ©

R(©) = inf I(X;2), (2)

pPz|x

where X X
E[A(X,Xp,c)| <D and H(S|Xpc)<C.




Universal Representation: Rate Penalty

The rate penalty incurred by meeting all constraints in © with fixed encoder is defined as:

A(©)=R(©)— sup R(D,C), (3)
(D,C)e®©

> sup(p cyee R(D,C) is used for satisfying the stringiest individual constraints

» Ideally, A(©) = 0 for each R, meaning a single encoder suffices for the entire tradeoff

Let X ~ N (ux,0%) be a Gaussian source and S ~ N (pg,0%) be a classification variable
with Cov(X,S) = 6;. Let © be any non-empty set of constraint pairs (D, C). Then,

A(©) = 0. (4)




Application with Deep Learning: Introduction

Task-oriented Lossy Compression
» Theoretical results assume the source distribution is known
» In practice, these distributions must be inferred from data

» Question: Can we use existing architectures to achieve approximate universality in
practice?



DL-based Lossy Compression: Schematic
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Figure: An illustration of the universal RDC scheme.
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DL-based Lossy Compression: Algorithm

Phase 1: Training initial conventional model [Blau et al. 2019]
» Start with untrained encoder f, decoder g, discriminator d, classifier c.
> (f,g) form an autoencoder and (g, h) form a GAN: so decoder is also a generator
» Alternate between training (f, g) and training (h,c)
> Objective with hyperparameter (g, A, Ap), X = g(f(X)):

L= E[|X -X|*] + X CE(S,S) + A\ Wilpx,pg)-
——— —— S———

Distortion loss Cross-entropy loss Wasserstein loss

Phase 2: Training (approximately) universal model

» Use f from Phase 1 with frozen weights, initialize new decoder g¢;, discriminator hq,
classfier ¢

» Repeat procedure
» Loss function: same as (5), with different (A4, Ac, Ap) tradeoff



DL-based Lossy Compression: Compression and Stochasticity

Compression
» Use tanh activation so output of encoder lies in (—1,+1)¢
» Choose L uniformly spaced quantization centers. Rate upper bounded by dlog L
» Use soft gradients [Agustsson et al. 2019] to backpropagate

Stochasticity
» GANSs require stochasticity to train
» Use universal/dithered quantization [Gray et al. 1993; Ziv 1985]: assume sender and receiver

d
both have access to u ~ Unif [—ﬁ, 4725 | . The sender computes

2 = argmin | f(z) +u —c|

and gives z to receiver. Receiver reconstructs image by passing z — u through decoder.
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DL-based Lossy Compression: MNIST/SVHN

Classification Accuracy
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(a) RDC curve on MNIST.
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» Bolded points denote the conventional models

» Unbolded points denote universal models
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(b) RDC curve on SVHN.
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DL-based Lossy Compression:

Conventional ~ Universal

(a) Decompressed outputs on MNIST.

MNIST /SVHN

A, = 0.001

Conventional  Universal

A, = 0.005

A, = 0.015

(b) Decompressed outputs on SVHN.
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