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Background: Deep Learning + Lossy Compression

Why deep learning for lossy compression?

▶ Requires retraining per dataset, but provides major benefits:

▶ Higher compression efficiency

▶ Better perceptual quality and realism

▶ Supports multi-task learning for downstream applications

Figure: Degradation of JPEG. As the rate
decreases, the result is pixelated.
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Background: Task-oriented Lossy Compression
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Z

Distortion Loss
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𝐻(𝑆𝑘| ෠𝑋)

መ𝑆1, መ𝑆2, … , መ𝑆𝐾

Source and Target labels:
▶ Source: X ∼ pX(x).
▶ Target labels: S1, · · · , SK ∼ pS(s1, · · · , sK), where pX,S(x, s1, · · · , sK).

Lossy Compression: X1, X2, · · · , Xn
i.i.d∼ pX(x).

▶ Encoder: f : Xn 7→ {1, 2, · · · , 2nR} maps the source Xn to a message Z.
▶ Decoder: g : {1, 2, · · · , 2nR} 7→ X̂n reproduces data X̂n to satisfy task-oriented demands

of downstream applications.
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Background: Rate-Distortion-Classification (RDC) Function

The rate-distortion-classification function:

▶ Distortion between symbols: E[∆(X, X̂D,C)] ≥ 0, with equality iff X = X̂

▶ Classification constraint [Wang et al. 2024]: the uncertainty of classification variables Sk

given X̂
H(Sk|X̂) ≤ Ck, ∀k ∈ [K].

R(D,C) = min
pX̂|X

I(X; X̂) (1a)

s.t. E[∆(X, X̂D,C)] ≤ D, (1b)

H(S|X̂) ≤ C. (1c)

where S is a classification variable.
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Background: Rate-Distortion-Classification Tradeoff
▶ Tradeoff between distortion and classification with given rate

(a) The RDC curve on MNIST.
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(b) The RDC curves at multiple rates on MNIST.
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Universal Representations: Motivation

Motivation for Universal Representations

▶ R(D,C) corresponds to designing an encoder-decoder pair for each (D,C) tradeoff point
(i.e., variable-encoder variable-decoder)

▶ Main question: Is it possible to design/reuse an encoder for multiple tradeoff points?
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Universal Representation: Definition

The Universal Rate-Distortion-Classification Function

▶ Let X ∼ pX and Θ be an arbitrary set of (D,C) pairs

▶ Idea: find a reprentation Z which can be transformed into reconstruction X̂D,C to
meet constraints (D,C) ∈ Θ

R(Θ) = inf
pZ|X

I(X;Z), (2)

where
E[∆(X, X̂D,C)] ≤ D and H(S|X̂D,C) ≤ C.
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Universal Representation: Rate Penalty

The rate penalty incurred by meeting all constraints in Θ with fixed encoder is defined as:

A(Θ) = R(Θ)− sup
(D,C)∈Θ

R(D,C), (3)

▶ sup(D,C)∈Θ R(D,C) is used for satisfying the stringiest individual constraints

▶ Ideally, A(Θ) = 0 for each R, meaning a single encoder suffices for the entire tradeoff

Let X ∼ N (µX , σ2
X) be a Gaussian source and S ∼ N (µS , σ

2
S) be a classification variable

with Cov(X,S) = θ1. Let Θ be any non-empty set of constraint pairs (D,C). Then,

A(Θ) = 0. (4)
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Application with Deep Learning: Introduction

Task-oriented Lossy Compression

▶ Theoretical results assume the source distribution is known

▶ In practice, these distributions must be inferred from data

▶ Question: Can we use existing architectures to achieve approximate universality in
practice?
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DL-based Lossy Compression: Schematic
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Figure: An illustration of the universal RDC scheme.
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DL-based Lossy Compression: Algorithm

Phase 1: Training initial conventional model [Blau et al. 2019]

▶ Start with untrained encoder f , decoder g, discriminator d, classifier c.

▶ (f, g) form an autoencoder and (g, h) form a GAN: so decoder is also a generator

▶ Alternate between training (f, g) and training (h, c)

▶ Objective with hyperparameter (λd, λc, λp), X̂ = g(f(X)):

L = λd E[∥X − X̂∥2]︸ ︷︷ ︸
Distortion loss

+ λc CE(S, Ŝ)︸ ︷︷ ︸
Cross-entropy loss

+ λp W1(pX , pX̂)︸ ︷︷ ︸
Wasserstein loss

. (5)

Phase 2: Training (approximately) universal model

▶ Use f from Phase 1 with frozen weights, initialize new decoder g1, discriminator h1,
classfier c1

▶ Repeat procedure

▶ Loss function: same as (5), with different (λd, λc, λp) tradeoff
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DL-based Lossy Compression: Compression and Stochasticity

Compression

▶ Use tanh activation so output of encoder lies in (−1,+1)d

▶ Choose L uniformly spaced quantization centers. Rate upper bounded by d logL

▶ Use soft gradients [Agustsson et al. 2019] to backpropagate

Stochasticity

▶ GANs require stochasticity to train

▶ Use universal/dithered quantization [Gray et al. 1993; Ziv 1985]: assume sender and receiver

both have access to u ∼ Unif
[
− 1

L−1 ,+
1

L−1

]d
. The sender computes

z = argmin
c∈C

∥f(x) + u− c∥

and gives z to receiver. Receiver reconstructs image by passing z − u through decoder.
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DL-based Lossy Compression: MNIST/SVHN

(a) RDC curve on MNIST. (b) RDC curve on SVHN.

▶ Bolded points denote the conventional models

▶ Unbolded points denote universal models
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DL-based Lossy Compression: MNIST/SVHN

(a) Decompressed outputs on MNIST. (b) Decompressed outputs on SVHN.

14


