

Universal Rate-Distortion-Classification Representations for Lossy Compression

Nam Nguyen¹

Collaborators: Thuan Nguyen², Thinh Nguyen¹, Bella Bose¹

¹Oregon State University

²East Tennessee State University

IEEE Information Theory Workshop 2025
Sydney, Australia
December 4, 2025

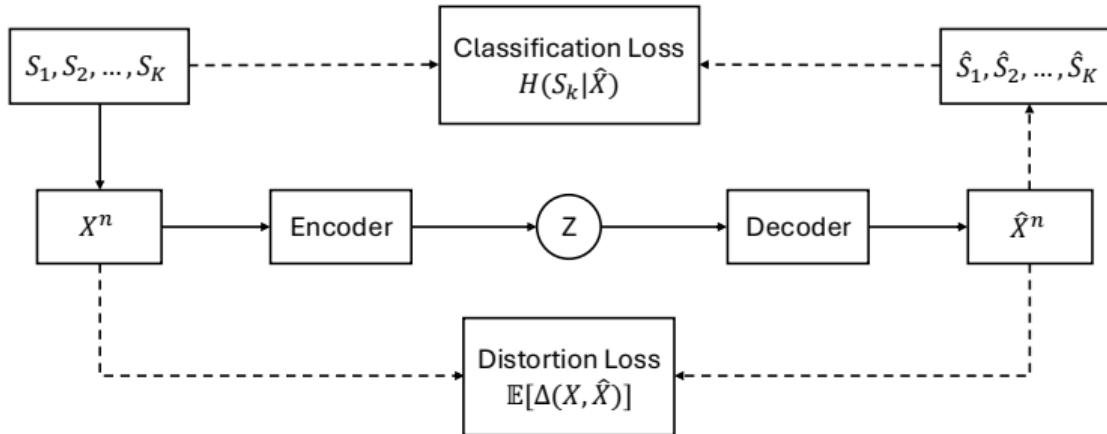
Background: Deep Learning + Lossy Compression

Why deep learning for lossy compression?

- ▶ Requires retraining per dataset, but provides major benefits:
- ▶ Higher compression efficiency
- ▶ Better perceptual quality and realism
- ▶ Supports multi-task learning for downstream applications

Figure: Degradation of JPEG. As the rate decreases, the result is pixelated.

Background: Task-oriented Lossy Compression



Source and Target labels:

- ▶ Source: $X \sim p_X(x)$.
- ▶ Target labels: $S_1, \dots, S_K \sim p_S(s_1, \dots, s_K)$, where $p_{X,S}(x, s_1, \dots, s_K)$.

Lossy Compression: $X_1, X_2, \dots, X_n \stackrel{\text{i.i.d}}{\sim} p_X(x)$.

- ▶ Encoder: $f : \mathcal{X}^n \mapsto \{1, 2, \dots, 2^{nR}\}$ maps the source X^n to a message Z .
- ▶ Decoder: $g : \{1, 2, \dots, 2^{nR}\} \mapsto \hat{\mathcal{X}}^n$ reproduces data \hat{X}^n to satisfy **task-oriented demands** of downstream applications.

Background: Rate-Distortion-Classification (RDC) Function

The rate-distortion-classification function:

- ▶ Distortion between symbols: $\mathbb{E}[\Delta(X, \hat{X}_{D,C})] \geq 0$, with equality iff $X = \hat{X}$
- ▶ Classification constraint [Wang et al. 2024]: the uncertainty of classification variables S_k given \hat{X}

$$H(S_k | \hat{X}) \leq C_k, \quad \forall k \in [K].$$

$$R(D, C) = \min_{p_{\hat{X}|X}} I(X; \hat{X}) \tag{1a}$$

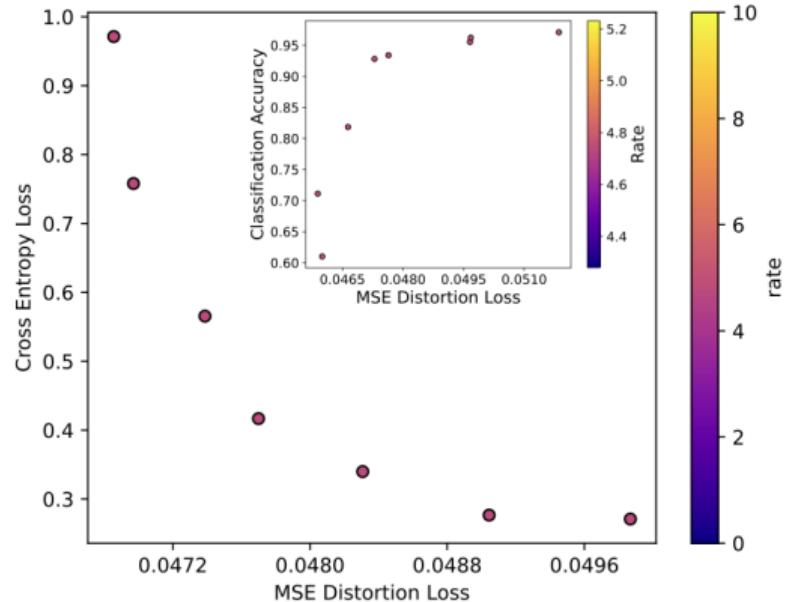
$$\text{s.t.} \quad \mathbb{E}[\Delta(X, \hat{X}_{D,C})] \leq D, \tag{1b}$$

$$H(S | \hat{X}) \leq C. \tag{1c}$$

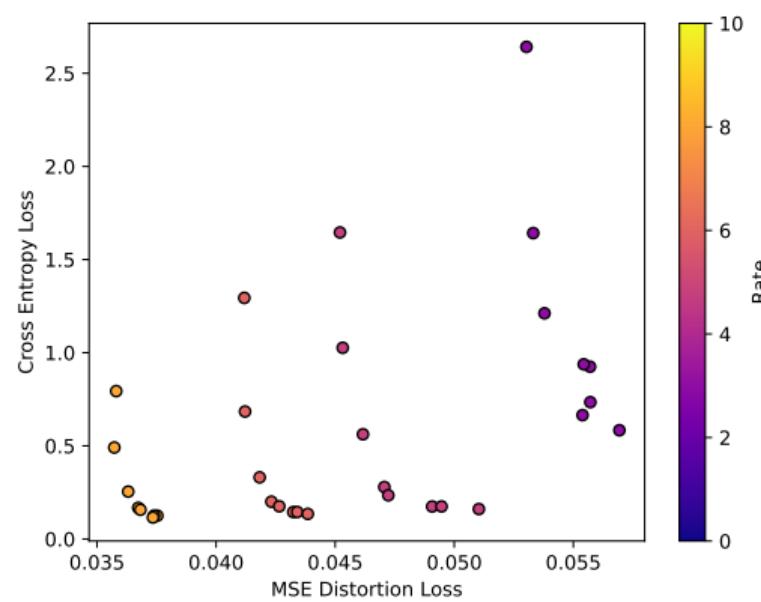
where S is a classification variable.

Background: Rate-Distortion-Classification Tradeoff

- ▶ Tradeoff between distortion and classification with given rate

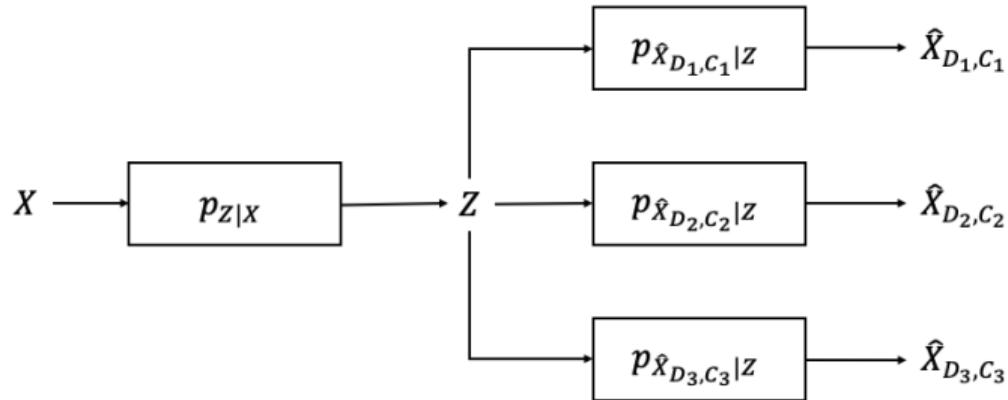


(a) The RDC curve on MNIST.



(b) The RDC curves at multiple rates on MNIST.

Universal Representations: Motivation



Motivation for Universal Representations

- ▶ $R(D, C)$ corresponds to designing an encoder-decoder pair for each (D, C) tradeoff point (i.e., variable-encoder variable-decoder)
- ▶ **Main question:** *Is it possible to design/reuse an encoder for multiple tradeoff points?*

Universal Representation: Definition

The Universal Rate-Distortion-Classification Function

- ▶ Let $X \sim p_X$ and Θ be an arbitrary set of (D, C) pairs
- ▶ **Idea:** find a **representation** Z which can be transformed into **reconstruction** $\hat{X}_{D,C}$ to meet constraints $(D, C) \in \Theta$

$$R(\Theta) = \inf_{p_{Z|X}} I(X; Z), \quad (2)$$

where

$$\mathbb{E}[\Delta(X, \hat{X}_{D,C})] \leq D \quad \text{and} \quad H(S|\hat{X}_{D,C}) \leq C.$$

Universal Representation: Rate Penalty

The *rate penalty* incurred by meeting *all* constraints in Θ with **fixed encoder** is defined as:

$$A(\Theta) = R(\Theta) - \sup_{(D,C) \in \Theta} R(D, C), \quad (3)$$

- ▶ $\sup_{(D,C) \in \Theta} R(D, C)$ is used for satisfying the stringiest individual constraints
- ▶ Ideally, $A(\Theta) = 0$ for each R , meaning a **single encoder** suffices for the entire tradeoff

Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian source and $S \sim \mathcal{N}(\mu_S, \sigma_S^2)$ be a classification variable with $\text{Cov}(X, S) = \theta_1$. Let Θ be any non-empty set of constraint pairs (D, C) . Then,

$$A(\Theta) = 0. \quad (4)$$

Application with Deep Learning: Introduction

Task-oriented Lossy Compression

- ▶ Theoretical results assume the source distribution is known
- ▶ In practice, these distributions must be inferred from data
- ▶ **Question:** *Can we use existing architectures to achieve approximate universality in practice?*

DL-based Lossy Compression: Schematic

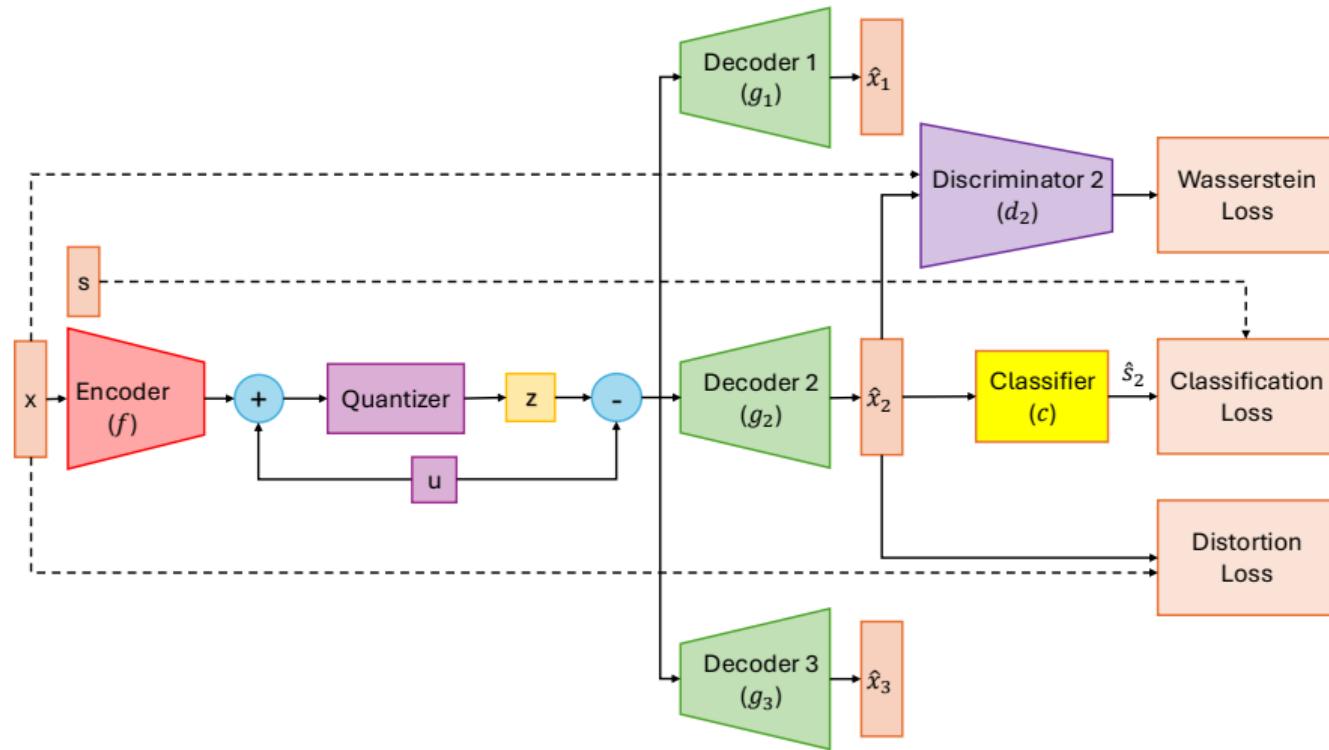


Figure: An illustration of the universal RDC scheme.

DL-based Lossy Compression: Algorithm

Phase 1: Training initial conventional model [Blau et al. 2019]

- ▶ Start with untrained encoder f , decoder g , discriminator d , classifier c .
- ▶ (f, g) form an autoencoder and (g, h) form a GAN: so decoder is also a generator
- ▶ Alternate between training (f, g) and training (h, c)
- ▶ Objective with hyperparameter $(\lambda_d, \lambda_c, \lambda_p)$, $\hat{X} = g(f(X))$:

$$\mathcal{L} = \lambda_d \underbrace{\mathbb{E}[\|X - \hat{X}\|^2]}_{\text{Distortion loss}} + \lambda_c \underbrace{\text{CE}(S, \hat{S})}_{\text{Cross-entropy loss}} + \lambda_p \underbrace{W_1(p_X, p_{\hat{X}})}_{\text{Wasserstein loss}}. \quad (5)$$

Phase 2: Training (approximately) universal model

- ▶ Use f from Phase 1 with frozen weights, initialize new decoder g_1 , discriminator h_1 , classifier c_1
- ▶ Repeat procedure
- ▶ Loss function: same as (5), with different $(\lambda_d, \lambda_c, \lambda_p)$ tradeoff

DL-based Lossy Compression: Compression and Stochasticity

Compression

- ▶ Use tanh activation so output of encoder lies in $(-1, +1)^d$
- ▶ Choose L uniformly spaced quantization centers. Rate upper bounded by $d \log L$
- ▶ Use soft gradients [Agustsson et al. 2019] to backpropagate

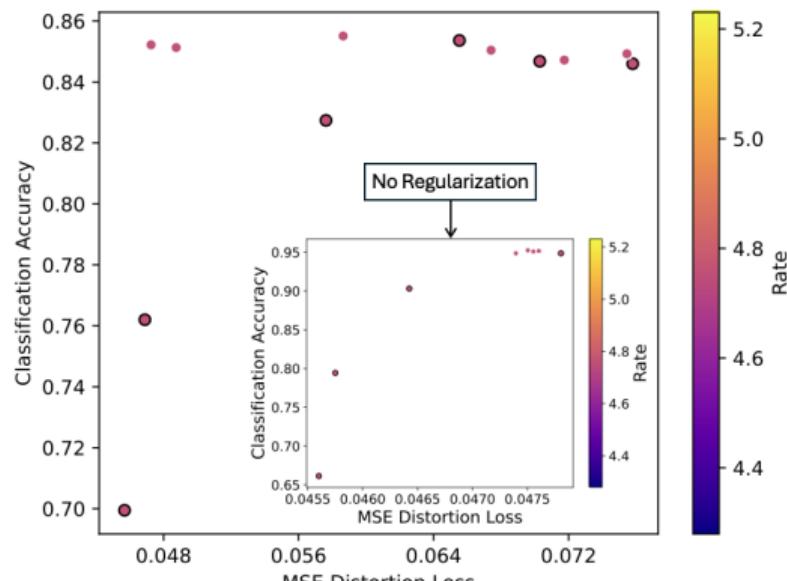
Stochasticity

- ▶ GANs require stochasticity to train
- ▶ Use *universal/dithered quantization* [Gray et al. 1993; Ziv 1985]: assume sender and receiver both have access to $u \sim \text{Unif}\left[-\frac{1}{L-1}, +\frac{1}{L-1}\right]^d$. The sender computes

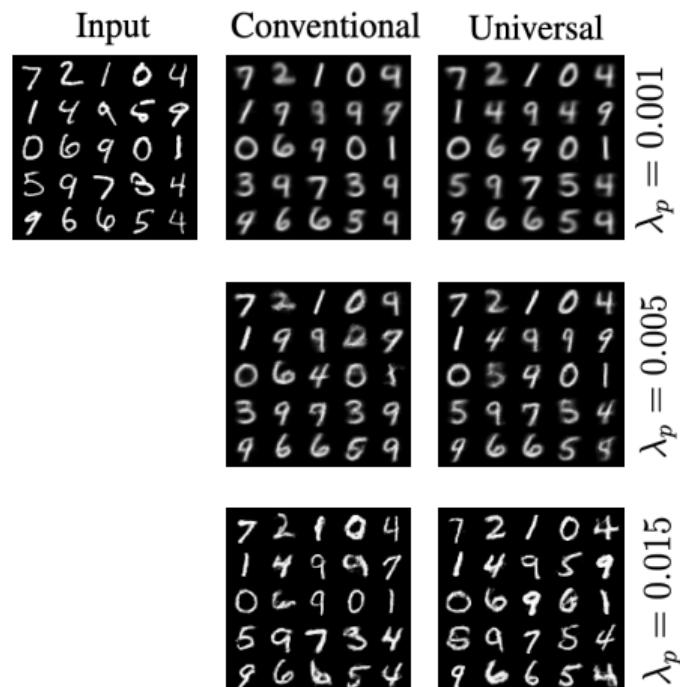
$$z = \arg \min_{c \in \mathcal{C}} \|f(x) + u - c\|$$

and gives z to receiver. Receiver reconstructs image by passing $z - u$ through decoder.

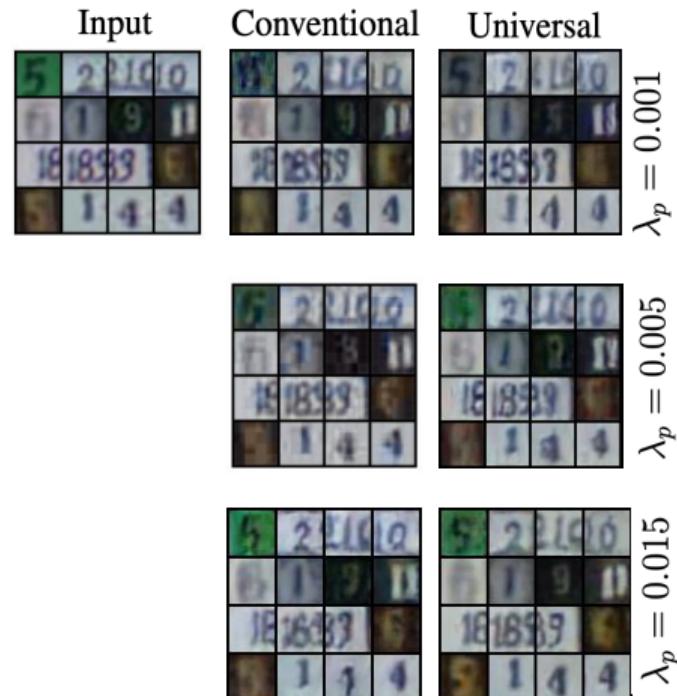
DL-based Lossy Compression: MNIST/SVHN



DL-based Lossy Compression: MNIST/SVHN



(a) Decompressed outputs on MNIST.



(b) Decompressed outputs on SVHN.